Here you can find the code used for the training and experimental evaluation of the approach described in the paper "Learning with Style: Continual Semantic Segmentation Across Tasks and Domains".

GA

Abstract

Deep learning models dealing with image understanding in real world settings must be able to adapt to a wide variety of tasks across different domains. Domain adaptation and class incremental learning deal with domain and task variability separately, whereas their unified solution is still an open problem. We tackle both facets of the problem together, taking into account the semantic shift within both input and label spaces. We start by formally introducing continual learning under task and domain shift. Then, we address the proposed setup by using style transfer techniques to extend knowledge across domains when learning incremental tasks and a robust distillation framework to effectively recollect task knowledge under incremental domain shift. The devised framework (LwS, Learning with Style) is able to generalize incrementally acquired task knowledge across all the domains encountered, proving to be robust against catastrophic forgetting. Extensive experimental evaluation on multiple autonomous driving datasets shows how the proposed method outperforms existing approaches, which prove to be ill-equipped to deal with continual semantic segmentation under both task and domain shift.

The paper can be downloaded here.

 

Code

The code for the training and the evaluation of the proposed method is available here.

 

Method

The overall architecture of the proposed approach is illustrated below. Arch

 

Results

The main quantitative and qualitative results are reported in the following. Arch Arch Arch Arch

xhtml/css website layout by Ben Goldman  - http://realalibi.com