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Abstract. Holography enables intriguing microscopic imaging modal-
ities, particularly through Quantitative Phase Imaging (QPI), which
utilizes the phase of coherent light as a way to reveal the contrast in
transparent and thin microscopic specimens. Despite the limitation of
image sensors, which detect only light intensity, phase information can
still be recorded within a two-dimensional interference pattern between
two distinct light waves. Numerical reconstruction is later needed to re-
trieve the amplitude and phase from such holographic measurements. To
this end, we introduce HoloADMM, a novel interpretable, learning-based
approach for in-line holographic image reconstruction. HoloADMM en-
hances imaging capability with spatial image super-resolution, offering
a versatile framework that accommodates multiple illumination wave-
lengths and supports extensive refocusing ranges with up to 10 µm pre-
cision. Our results indicate a substantial improvement in reconstruction
quality over existing methods and demonstrate HoloADMM’s effective
adaptation to real holographic data captured by our Digital in-line Holo-
graphic Microscope (DIHM). This work not only advances holographic
imaging techniques but also broadens the potential for non-invasive mi-
croscopic analysis applications.

Keywords: In-line holography, lens-free microscopy, ADMM, super-resolution,
quantitative phase imaging.

1 Introduction

Dennis Gabor introduced holography in his seminal work [13] where he demon-
strated true three dimensional imaging capability by simultaneously recording
coherent light’s intensity and direction, i.e., phase, within a two dimensional in-
terference pattern. Gabor’s prototype, depicted in Fig. 1 on the right, embodies
an in-line holographic imaging setup. Here, an object of interest is illuminated
by a coherent light source, generating a diffraction pattern at the detector plane
obtained through the interference of two waves: one scattered by the object and
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Fig. 1: Lens-free in-line holographic setup: (Left) our Digital In-line Holographic Mi-
croscope (DIHM). (Right) schematics of the different DIHM components.

another unobstructed background wave passing through the object plane. This
interference pattern encodes both amplitude and phase information of the wave
scattered by the object, thus characterizing its complete complex transmission
distribution, which can be recovered using phase retrieval-based reconstruction
techniques. The ability to capture phase information allows for interesting appli-
cations such as phase imaging in microscopy [24], where it allows to generate im-
age contrast for transparent ultra-thin microscopic specimens. Advancements in
phase imaging have facilitated close-up non-invasive inspection of living cells [28],
with applications in medicine [29], biology [20], and neuroscience [8]. Highly ac-
curate interferometry, driven by holographic imaging, finds applications in high-
precision engineering [36] and material science. Phase contrast microscopy [2]
also offers phase imaging capability but lacks quantitative measurement ability.
In contrast, holography is able to quantify exactly the light phase shift mak-
ing it suitable for applications requiring precise measurements, such as accurate
tolerance estimations of microscopic features and three-dimensional object recon-
struction [41], additionally, in-line holographic setups can be used in compact,
mobile, and lensless imaging systems free of any optical aberrations. Despite
its desirable features, in-line holography typically requires iterative numerical
reconstruction [14] to retrieve high-quality images and to suppress undesirable
artifacts, such as the twin image [39], which corresponds to the latent field’s
complex conjugate recorded as a byproduct by the image sensor and appears as
an out-of-focus, blurry image superimposed onto the true sharp one.

Recent advancements have demonstrated the efficacy of learning-based meth-
ods in tackling holographic reconstruction, both in supervised [3,4,31] and unsu-
pervised [19] manners and to suppress, to some degree, the twin image artifacts.
The scarcity of real large-scale holographic measurements, coupled with ground
truth complex transmission data, has led most approaches in the literature to
rely primarily on synthetic data. However, due to the significant domain gap
between synthetic and real holographic measurements, achieving model trans-
ferability to different domains remains challenging and no approach with effective
generalization capabilities have been demonstrated so far.
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We address for the first time this issue and propose a comprehensive and
versatile framework based on an unrolled deep architecture inspired by a model-
based reconstruction strategy that is robust to domain changes. This is made
possible through our proposed model’s interpretability: in this way we can lever-
age large scale synthetic data to effectively learn the inverse holographic image
formation model and showcase outstanding generalization ability to the real
world domain without any explicit adaptation. Furthermore, we introduce a
joint framework for in-line holographic image reconstruction and spatial image
super-resolution where we explicitly exploit complimentary spatial information
in the form of aliasing introduced by sub-pixel displacements between consecu-
tive holographic measurements. Our main contributions are the following:

– This work introduces a versatile framework that seamlessly integrates in-line
holographic image reconstruction with spatial super-resolution and supports
an extensive refocusing range.

– Large scale synthetic data is leveraged to learn the inverse model underlying
in-line holographic image formation within an interpretable manner which
ensures robust generalization capabilities well beyond the data distribution
of the training domain.

– Our approach is validated on standard datasets and also through real world
samples imaged with our Digital in-line Holographic Microscope (DIHM): it
achieves high-quality reconstruction and demonstrate the framework’s effi-
cacy and practical utility in real-world applications.

2 Related Works

Iterative phase retrieval algorithms based on error reduction are commonly
used in digital in-line holography to reconstruct the latent complex field from
real-valued holographic measurements. Gerchberg and Saxton [14] first proposed
an alternating field projections approach between the object and detector planes
while enforcing support constraints. With sufficient number of iterations the field
typically converges towards the latent one. Fienup [10] later introduced modifi-
cations to the original method of [14] notably the Hybrid Input Output (HIO)
variant which incorporates a feedback parameter to relax the hard support con-
straint on the object plane. Indeed, it can be shown that such error reduction
approaches are special cases of an inverse problem solving framework [25] prone
to local minima and in some cases divergence. Fienup’s modification helps avoid
possible stagnation and further regularizes the solution space, it has been widely
used in the literature and it serves as a baseline method, with variants using
single or multiple input holograms captured at different heights referred to as
"SH-PR" or "MH-PR", respectively. Iterative methods leveraging prior knowl-
edge of the target sample, such as sparsity [1,9,39], have demonstrated the abil-
ity to produce cleaner images by enforcing such constraints. Moreover, iterative
solvers help mitigate the undesirable artifacts of the twin image, as demonstrated
in previous studies. For instance, Zhang et al. [39] devised a compressive sensing
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approach employing an iterative shrinkage/thresholding strategy to gradually
reduce such artifacts. Latychevskaia et al. [21] achieved twin image-free in-line
holography through an iterative alternating projections approach without en-
forcing prior knowledge on the object of interest. Chen et al. [6] proposed an
iterative method for holographic image reconstruction and computational re-
focusing optimizing a least squares problem with plain gradient descent steps.
Niknam et al. [27] and Chen et al. [38] employed an untrained neural network
with randomly generated weights as a natural image prior within a model-based
reconstruction framework. Adversarial iterative techniques have also been inves-
tigated in [7] where the authors used a generative network to learn the inverse
image formation model of in-line holography, a discriminator is then used to
distinguish between the original hologram and the simulated one.

Learning-based methods offer inherent immunity to the twin image issue.
Networks trained using pairs of holographic images and sharp ground truth
data learn a direct mapping between the two sets, circumventing the need to
model the underlying physics of holographic image formation. Once trained suc-
cessfully, these methods can produce twin image-free and sharp reconstructions.
However, this straightforward black box approach may encounter unexpected
failure cases when presented with new data exhibiting different statistics than
that seen during training. Recent work by Chen at al. [3,4] demonstrated promis-
ing model transferability by training a network based on Fourier operators [23]
using real data from a specific biological tissue type and testing it on different
types. Despite this advancement, such approaches may struggle to generate high-
quality images when confronted with test samples that significantly differ from
the training data or originate from entirely different distributions. The work
of Chen et al. [4] is closely related to ours, as it also performs spatial super-
resolution. However, while the exact methodology employed by [4] to perform
such task remains undisclosed, several key distinctions set our work apart: (i)
We explicitly incorporate image alignment and registration to leverage aliased
information for spatial super-resolution. (ii) Our network architecture priori-
tizes interpretability and is closely related to [5], enhancing robustness to new
unseen real-world data. (iii) Our network operates independently of changes in
illumination wavelength and/or detector/object distance, eliminating the need
for retraining when these variables are altered. Rivenson at al. [31] introduced a
supervised technique where an input hologram is first back-propagated through
free space to generate an initial estimate of the latent field which is then fed into
a multi-scale CNN that refines it. Huang et al. [19] proposed a self-supervised
learning approach where a network similar to that of [3] is trained using a physics
consistency loss with a strategy similar to that of [7] where the loss is evaluated
between the input hologram and a simulated one using the predicted complex
field distribution.
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Fig. 2: The overall fully differentiable architecture of HoloADMM: A stack of low
resolution noisy holograms captured at different heights used to reconstruct a high-
quality and spatially super-resolved complex field.

3 Methodology

In this section the image formation model for in-line holography will be presented
along with the problem formulation and our proposed model.

3.1 Image Formation Model

The schematics in Fig. 1 illustrate the basic setup of Gabor’s in-line lensless
holographic imaging system which we use in our DIHM. Given a latent complex
transmission field at the object plane x ∈ Chw sampled at high resolution with
spatial dimensions h × w, for each height zi, i = 1, ..., N a hologram can be
simulated using the following equation:

fs,τi,zi(x) = DsWτi |Pzix|2 (1)

Where fs,τ,z : Chw 7→ Rh′w′
is the forward in-line holographic image formation

model. The latent field x is propagated to the detector plane using the com-
plex near-field Fresnel propagation kernel Pzi [22]. The real valued hologram
is obtained by calculating the modulus square of Pzix which is then spatially
warped using the matrix Wτ simulating spatial shifts in the (u, v) plane (see
Fig. 1) with sub-pixel accuracy, defined by the set τ = {(τu1 , τv1 ), ..., (τuN , τvN )}.
These spatial shifts are necessary for enabling image super-resolution capability,
see Sec. 4.3. Ds is a down-sampling matrix that reduces the image size by a
factor of s, resulting in dimensions h′ = h/s and w′ = w/s. Notice that the
image formation model as described here is non-linear, more general, and phys-
ically accurate where the object of interest is assumed to have both absorption
and phase shift properties—though absorption can sometimes be negligible for
thin and transparent micro-organisms. Additionally, sensor read and shot noise
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sources are also simulated using the noise model from [11]: σ(k) =
√

α · y(k) + γ,
where σ is the pixel-dependent standard deviation of the noise level at pixel k,
with α and γ representing the variances of shot and read noises, respectively,
and y(k) is the clean input pixel value.

3.2 Problem Formulation

The aim of this work is to reconstruct a spatially super-resolved complex trans-
mission distribution from a given stack of noisy low-resolution input holograms
H = [h1, ...,hN] captured at N different heights z = [z1, ..., zN ] with spatial
shifts τ = {(τu1 , τv1 ), ..., (τuN , τvN )}. This problem can be reformulated as a regu-
larized least squares minimization:

(x̃, τ̃) = argmin
x,τ

1

2
∥H − fs,τ,z(x)∥22 + βΨ(x) (2)

Where Ψ is a regularizer that constrains the possible solution space on the dis-
tribution of the latent field x and β is a discrepancy parameter controlling the
strength of such regularization. Accurate prediction of z is important in order
to reconstruct x as the field at the detector plane can be propagated to the
object plane and vice-versa using Pz or its conjugate P ∗

z . The value of z can
be accurately estimated using any computational refocusing technique from the
literature [35]. Spatial shifts τ need to be estimated with sub-pixel accuracy for
multi-frame image registration, thereby enabling spatial image super-resolution.
The optimization framework as expressed in Eq. 2 is non-linear in all optimiza-
tion variables (x̃, τ̃) and can be solved by iteratively optimizing for one variable
at a time while keeping the other one fixed, i.e., by alternating the following (A)
and (B) steps:

(A) x̃ = argmin
x

1

2
∥H − fs,τ,z(x)∥22 + βΨ(x) (3)

(B) τ̃ = argmin
τ

1

2
∥H − fs,τ,z(x)∥22 (4)

3.3 HoloADMM: End-to-end Learning For QPI

Solving for the latent field (A): Eq. 3 is a regularized non-linear least squares with
no closed-form solution for x̃: a good approximation can be obtained iteratively
with a proper image prior Ψ such as Total Variation [33] or other natural image
priors. Choosing a proper Ψ to solve Eq. 3 is not trivial: depending on the target
scene properties multiple possible image priors can be used. We propose to learn
a suitable prior agnostic to scene properties owing to the large representation
capacity of deep neural networks. To this end, a variable splitting technique
is used to solve Eq. 3 namely the Alternating Direction Method of Multipliers
(ADMM) [12] where an auxiliary variable v is introduced such that:

(x̃, ṽ) = argmin
x,v

1

2
∥H − fs,τ,z(x)∥22 + βΨ(v) s.t x− v = 0 (5)
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Note that Eq. 5 is now a constrained version of the previous formulation in Eq. 3
where the data-fidelity and prior terms are no longer coupled and consequently
they can be solved separately, Eq. 5 can be further split into multiple sub-
problems by first retrieving its scaled augmented Lagrangian:

LADMM
ρ (x,v,u) =

1

2
∥H − fs,τ,z(x)∥22 + βΨ(v) +

ρ

2
∥x+ u− v∥22 +

ρ

2
∥u∥22 (6)

where u is the scaled Lagrange multiplier and ρ is a penalty term for the con-
straint in Eq. 5 forcing the final estimate v to be as close as possible to the true
solution x. To minimize Eq. 5 the saddle point of Eq. 6 needs to be found by
iteratively solving the following three sub-problems:

x← argmin
x

LADMM
ρ (x,v,u) = argmin

x

1

2
∥H − fs,τ,z(x)∥22 +

ρ

2
∥x+ u− v∥22 (7)

v← argmin
v

LADMM
ρ (x,v,u) = argmin

v

ρ

2
∥x+ u− v∥22 + βΨ(v) (8)

u← u+ x− v (9)

The full model architecture is shown in Fig. 2: in each ADMM iteration
(shown in the grey box), x in Eq. 7 is updated using multiple steps of plain
gradient descent or any other gradient based approach, e.g., conjugate gradient.
Since x = a + ib ∈ C, gradients are calculated using Wirtinger derivatives [26]
where x is updated via:

x← x− α · ∂

∂x∗L
ADMM
ρ (x,v,u) (10)

Where ∂
∂x∗ = 1

2 (
∂
∂a + i ∂

∂b ), x
∗ is the complex conjugate of x, and α is a learn-

ing rate. The gradient calculation requires defining the backward model of fs,τ,z
which we denote with f b

s,τ,z: it is approximated by up-sampling all N low res-
olution input holograms, back-propagating each hologram in the stack using
P ∗
zi , i = 1, ..., N back to the object plane, and aligning the resulting complex

images. Finally, the final back-propagated output xb is obtained by averaging
all N aligned complex fields. Eq. 8 can be viewed as a simple denoising problem
with the identity matrix I as the forward model and a noisy input x+ u, where
the target is to estimate a clean complex field v. In principle, any plug-and-play
denoiser should be suitable to solve Eq. 8. However, to achieve better perfor-
mance and enable end-to-end learning we use a trainable Convolutional Neural
Network (CNN) as a denoiser that acts as a learned image prior which in our case
is a ResUnet architecture [40]. Finally, the update step of u is straightforward.

Fig. 3 shows a detailed implementation of the update rule for any given x
where multiple steps of gradient descent are first performed to solve Eq. 7 fol-
lowed by a denoising step to solve Eq. 8. Notice that the weights of the CNN
are shared among all ADMM iterations which are unrolled to form the overall
network architecture. The weights are learned in a supervised end-to-end man-
ner together with all the other hyper-parameters namely the scaled Lagrange
multiplier ρ from Eq. 6 and the gradient descent learning rate α from Eq. 10.
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Fig. 3: Detailed implementation of each unrolled ADMM iteration.

Solving for spatial shifts (B): In principle any image registration algorithm can
be used to estimate spatial shifts τ = {(τu1 , τv1 ), ..., (τuN , τvN )} between a reference
frame (hologram closest to the object plane) and all the other frames. Note that
the registration is not performed on the raw input holograms because diffraction
patterns are different due to field propagation since the distance between the
object and detector planes changes with each capture. The registration is carried
out on the images of the back-propagated stack of N holograms. We use a fast
FFT based alignment approach with arbitrary sub-pixel accuracy [17].

Complex shallow network: Since the target domain is complex by nature, the
initial estimate (x0 ∈ C) undergoes further processing through a shallow complex
CNN [16] in order to learn close correlations between its real and imaginary
components without the need to separate them into two distinct channels. Such
network is designed with a residual connection linking the input and output
distributions (see the suppl. mat. for more details), enhancing information flow
and reducing noise in x0: it has multiple convolution layers with complex kernels
in C thus the learned weights are complex in nature.

Initialization: As depicted in the initialization block in Fig. 2 (blue box), after
estimating the relative spatial displacements using the back-propagated fields,
x0 is obtained by applying the backward model f b

s,τ,z as described before and
feeding the resulting complex field to the shallow residual complex network. u0

and v0 are set to 0. The initial value for the learning rate α of the plain gradient
descent step in Eq. 10 is set to 0.01 and ρ in Eq. 6 is set to 0.1, recall that both
of these variables are learned end-to-end (refer to the suppl. mat.). We use L = 3
gradient descent steps in each block for a total of n = 5 ADMM steps.

3.4 Datasets and Training Details

The lack of real holographic datasets, along with ground truth complex fields,
is the main limitation hindering the development of learning-based reconstruc-
tion models. Self-supervised approaches, [19, 27] where the loss is evaluated be-
tween a real captured hologram and a simulated one using the predicted phase
and amplitude distributions of the latent complex field, suffer from three major
drawbacks: (i) the problem formulation is severely ill-posed since multiple pos-
sible solutions might correspond to the same measurement, eventually leading
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Fig. 4: Synthetic data generated using a stable diffusion model (top left) and a software
that generate random shapes with different sparsity levels (bottom left). An input latent
field and its simulated hologram (right).

to inaccurate reconstruction that does not necessarily correspond to the true
target; (ii) designing effective self-supervised loss functions can be challenging.
These loss function needs to capture relevant characteristics of the data and
the reconstruction task, which may not always be straightforward to define;
(iii) the real forward model, if not carefully designed, will further contribute to
low reconstruction quality even with small simulation inaccuracies. Large scale
real data with ground truth complex distributions is not trivial to collect, in
fact, ground truth data used in the literature is obtained by the MH-PR al-
gorithm [10] or other closely related variants which imposes an upper-bound
hindering the true capability of any network. We therefore argue that learning
an accurate inverse model through large-scale pixel-accurate synthetic data is
crucial for high-quality reconstruction. To this end, we generate a large num-
ber of synthetic microscopic data featuring images with varying complexity and
sparsity. A stable diffusion model [32] fine-tuned on microscopic images4 is used
to generate dense interconnected samples with high spatial frequencies, in ad-
dition, samples with a varying degree of sparsity were obtained using a simple
software that generates a random number of simple shapes. Fig. 4 shows some
samples generated using the two modalities; sparse as well as dense data samples
are generated to account for the real nature of microscopic images where indi-
vidual or few cells as well as dense connective tissues might be present in a given
image. Phase and amplitude distributions are obtained from a single gray-scale
image I by A = |x| = eω×I, Φ = ∠x = πI, where ω ≤ 0 is a weight determining
the degree of transparency of the sample, no amplitude information (or fully
transparent image) corresponds to ω = 0, data is simulated with ω = −1.6 to
favor highly transparent samples. The dataset contains more than 100k different
training samples (a smaller dataset led to lower performances). As shown on Fig.
4 (right) input low resolution noisy holograms are coupled with high-resolution
clean phase and amplitude images. During training, wavelengths are chosen ran-
domly from [440, 530, 638] nm and used to simulate each hologram along with
a broad refocusing range from 0.5 mm up to 1.0 mm with a step size of 10µm.
The dataset is challenging because a single object can have many corresponding

4 https://huggingface.co/Fictiverse/Stable_Diffusion_Microscopic_model

https://huggingface.co/Fictiverse/Stable_Diffusion_Microscopic_model
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Table 1: Quantitative comparison results on Di and Do synthetic test data without
spatial super-resolution. (†) is a self-supervised approach.

Method RMSE↓ (×10−3) PSNR↑ SSIM↑
A Φ A Φ A Φ

Di Do Di Do Di Do Di Do Di Do Di Do

Wu et al. [37] - - 20.31 12.47 - - 17.160 19.163 - - 0.364 0.640
Huang et al.† [19] - - 7.81 12.50 - - 14.271 17.715 - - 0.602 0.549
Ren et al. ×1 [30] - - 8.11 4.31 - - 21.343 23.822 - - 0.647 0.700
Rivenson et al. [31] 5.34 6.77 9.43 9.83 23.113 23.418 20.628 21.987 0.736 0.766 0.681 0.703
Chen el at. [3] 2.23 9.70 4.33 15.29 27.318 24.397 24.451 21.402 0.853 0.782 0.820 0.672
HoloADMM ×1 (Ours) 1.23 0.96 2.42 1.55 29.373 30.198 26.410 28.092 0.923 0.905 0.902 0.877

holographic measurements each with different illumination wavelength and/or
refocusing distance, forcing any learning-based approach to effectively learn the
inverse model which is agnostic to changes in the input. Sub-pixel shifts are
randomly simulated in the range of ±3 pixels. HoloADMM is trained using the
MSE as loss for 100 epochs with the Adam optimizer and a learning rate of 1e−4.

4 Results and Discussions

Results on synthetic as well as real in-line holographic data are presented in
this section along with quantitative and qualitative comparisons with competing
approaches. Additional qualitative results can be found in the suppl. mat.

4.1 Synthetic Holographic Data

HoloADMM and its competitors are trained exclusively on synthetic data, as
detailed in Sec. 3.4, and evaluated on both inner and outer synthetic test sets
denoted as Di and Do respectively: the former comprises synthetic images gener-
ated using the approach outlined in Sec. 3.4, while the latter contains a handful
of classic test targets taken from the Set14 dataset [18] (chosen image indices
are [1, 2, 9, 10, 12]). HoloADMM is trained using N = 10 holograms, yet it is able
to infer complex fields from an arbitrary number of input holograms, provided
enough memory. As demonstrated below, our model consistently exhibits supe-
rior reconstruction quality compared to the state-of-the-art, even when provided
with just a single hologram as input or when the input is heavily down-sampled.
Quantitative metrics reported in Tab. 1 demonstrate HoloADMM’s efficacy on
both datasets, outperforming competing approaches by considerable margins ac-
cording to all reported metrics with an average PSNR improvement of over 4dB
on the phase (Φ) compared to the second best approach on Do. Performances
are confirmed by Fig. 5 where visual inspection reveals HoloADMM’s capability
to preserve image details while effectively suppressing sensor noise, resulting in
clean and sharp phase images in contrast to competing methods (note that [3]
fails to suppress signal-dependent noise and [31, 37] suffer from blur artifacts).
When considering also joint spatial super-resolution, HoloADMM is trained

using a stack of holograms decimated by a factor of ×4 with an input shape
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Fig. 5: Reconstructed Φ from some synthetic holographic samples from Di and Do .

Table 2: Quantitative comparison results on on Di and Do synthetic test data with
spatial super-resolution.

Method SR factor RMSE↓ (×10−3) PSNR↑ SSIM↑
A Φ A Φ A Φ

Di Do Di Do Di Do Di Do Di Do Di Do

Ren et al. [30] ×4
- - 23.76 75.49 - - 16.531 14.159 - - 0.284 0.520

HoloADMM (Ours) 2.46 1.32 4.59 1.94 26.544 29.313 23.764 27.626 0.806 0.827 0.769 0.791
HoloADMM (Ours) ×8 7.13 8.53 12.35 14.94 21.910 22.938 19.442 20.794 0.554 0.663 0.488 0.598

of 128×128 pixels, yet it achieves superior phase image quality (see, Fig. 6),
compared to other competitors trained using high-resolution inputs (512×512
pixels). Tab. 2 quantitatively corroborates these results: HoloADMM reaches
an SSIM value of 0.791 with ×4 down-sampled inputs, compared to 0.703 ob-
tained by [31] with full-resolution input holograms. Ren et al. [30] also performs
spatial super-resolution via sub-pixel convolutions [34]. The results in Table 2
and Figure 6 demonstrate that our model produces sharper images, preserving
high-frequency details and outperforming [30] for ×4 super-resolution. Even with
an extreme factor of ×8, HoloADMM is capable of yielding reasonable results,
(see Tab. 2), in contrast to [30], which fails to generate meaningful distributions
(see suppl. mat. for more qualitative results). Additionally, results reported in
Table 3 and Figure 7 compare the reconstruction performance of HoloADMM,
already trained on synthetic data, with other model-based iterative methods
on Airplane, Barbara, and Baboon samples from Do. For a fair comparison, we
report results using single as well as 10 holograms as input; in both cases, our ap-
proach outperforms iterative solvers and effectively suppresses signal-dependent
sensor noise, unlike [7, 38], where the proposed algorithms tend to fit the noise
model as the number of iterations increases. Furthermore, HoloADMM preserves
small spatial details, such as the fine whiskers in Figure 7, while avoiding un-
desirable artifacts like those produced by [27] in an attempt to suppress sensor
noise. Iterative approaches typically require a large amount of time to produce
reasonable results (up to 15 min. for a 512×512 image for [7]), while HoloADMM,
once trained, can infer complex field distributions in under a second.
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Fig. 6: Reconstructions with ×4 SR for HoloADMM and [30] and ×1 for [3, 31].

Table 3: Quantitative results (PSNR) on some standard test targets. The table com-
pares the PSNR achieved by our approach with other iterative methods. Computation
times refer to an NVIDIA A6000 except for (*) that use the CPU only.

Method # holograms Time (s) Airplane Barbara Baboon
A Φ A Φ A Φ

Niknam et al. [27] 1 529 21.019 11.020 16.127 14.261 17.425 13.583
Chen et al. [7] 1 990 18.297 17.4709 14.720 12.051 15.403 14.960
Chen et al. [38] 1 797 17.188 18.012 20.047 17.179 15.504 14.744
SH-PR [10] 1 60∗ 16.307 9.085 17.540 12.937 14.934 12.753
MH-PR [10] 10 100∗ 19.465 11.295 19.900 19.565 20.596 18.567
HoloADMM ×1 1 0.29 29.178 24.828 25.261 23.959 23.800 21.454
HoloADMM ×1 10 0.58 32.223 28.205 28.289 26.757 27.198 25.020

4.2 Real Holographic Data

Fig. 1 shows our DIHM prototype with multi-height phase retrieval and sub-pixel
shift super-resolution capability. Please refer to suppl. mat. for details on the
hardware setup. We capture holograms of two different samples: Polystyrene
beads, which mimics real microscopic samples in both structural size and light
transmission properties. They have diameters ranging from 0.9-9 µm and are
equipped with carboxyl functional groups on their surface, allowing them to co-
valently attach to the cover glass and form a monolayer structure. The cover glass
slides are attached to a sticky microchannel slide (IBIDI sticky-Slide I Luer). The
sample is imaged using an illumination wavelength in the visible range, e.g., 638
nm, to achieve ambiguity-free phase retrieval, prevent phase wrapping, and pro-
vide suitable phase contrast. The channel is filled with a tailored liquid solution
(Immersol). A phase calibration target “Phasefocus”, was used to calibrate
our DIHM setup. This target is fabricated through Reactive Ion Etching (RIE) of
amorphous SiO2, which is patterned via optical lithography, as described in [15].
The target includes both phase and amplitude features, which can be imaged
using our DIHM. The phase features are 600 nm deep trenches etched into trans-
parent amorphous SiO2, providing feature sizes that span a wide range of spatial
frequencies, from length scales of 2 µm to length scales of 600 µm. Our focus
is on the reconstruction performance of the smallest features, such as GRP 9,
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Fig. 7: Reconstruction results of A and Φ on Baboon test target.

MH-PR (× 𝟏) MH-PR (Bicubic ↑ × 𝟒)

× 𝟏 × 𝟒 × 𝟏𝟐𝟎𝝁m 𝟐𝟎𝝁m𝟐𝟎𝝁m

HoloADMM (× 𝟏)

× 𝟒𝟐𝟎𝝁m

HoloADMM (× 𝟒)

𝑟𝑎𝑑

Fig. 8: Reconstructed Φ from real beads holograms with ×1 and ×4 SR. Results from
MH-PR are also shown with ×4 resolution using bicubic up-sampling. Input low reso-
lution holograms are shown on the top right corners.

which have a structure size of 2-10 µm. We tested all competing models listed in
Tab. 1 trained solely on synthetic data and obtained very poor and sometimes
meaningless reconstructions on real data, further highlighting the challenge of
model transferability beyond the training domain. Qualitative results for those
models are reported in the suppl. mat. In contrast, HoloADMM is able to pro-
duce high-quality reconstructions on different holographic samples for a model
trained on synthetic data only and without any form of adaptation. Notably, it
not only produces meaningful results but also achieves higher spatial resolution,
up to ×4 as shown in Fig. 8 reaching an effective pixel size of 280 nm, alongside
results from the standard MH-PR algorithm. Fig. 9 shows reconstructed GRP 9
features from the phase calibration target, along with outputs from other iter-
ative approaches listed in Tab. 3. HoloADMM reconstructs cleaner and sharper
phase and amplitude images suppressing noise and undesirable diffraction pat-
terns, revealing fully transparent features with higher contrast and allowing for
better quality 3D surface reconstructions from predicted Φ w.r.t. competitors.

4.3 Ablation Studies

Different ablation experiments have been conducted on a small subset of the
training dataset. The increase in the number of ADMM steps, i.e., the number
of unrolled blocks, leads to lower overall loss values, as shown in Fig. 10 (left),
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Fig. 9: Reconstructed A and Φ from a real phase calibration target. Highlighted fea-
tures are invisible in the bright-field domain but exhibit high phase contrast. Recon-
structed 3D surfaces from Φ of the etched lines are shown on the top right corner of
each zoomed-in region.

Fig. 10: Ablation experiments: (left) with different number of unrolled ADMM steps,
(center) with a straightforward approach, (right) without image registration.

but requires more computational resources; we opted for n = 5 in our model. A
naive approach that takes a hologram stack as input and predicts the latent field
falls short of achieving good performance, even on training data, as shown in Fig.
10 (center), and is unable to generalize beyond that domain. Image registration
is crucial for image super-resolution; without such a step, complementary spatial
information in the form of aliasing is not exploited, and the spatial quality of
the reconstructed images deteriorates, as shown in Fig. 10 (right). More ablation
results are in the suppl. mat.

5 Conclusions

We introduced HoloADMM, an approach that combines interpretability of model-
based solvers and the large learning capacity of deep neural networks. We demon-
strated that by leveraging large-scale synthetic datasets, high-quality phase imag-
ing capability can be achieved. Additionally, our approach exhibits strong gener-
alization abilities, seamlessly extending to real captured holographic data with
notable accuracy. This not only highlights the promise of our methodology but
also suggests its potential for practical applications across diverse domains, from
biomedical imaging to materials science and beyond. Nonetheless, there are other
avenues for potential investigation, such as joint computational refocusing. This
is a natural extension of our work and will be further investigated.
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