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Abstract—In federated learning multiple clients collaboratively
train a global machine learning model by exchanging their locally
trained model weights instead of raw data. In the standard
setting, every client trains its local model for the same number of
epochs. We introduce ALT (Adaptive Local Training), a simple
yet effective feedback mechanism that can be introduced on top
of any federated learning scheme at the client side to limit unnec-
essary and degrading computations. ALT dynamically adjusts the
number of training epochs for each client based on the similarity
between the local representation and the global one, ensuring that
well-aligned clients can train longer without experiencing client
drift while in case of too large drifts the training is stopped
earlier. We evaluated ALT on federated partitions of the CIFAR-
10 and Tiny-ImageNet datasets, demonstrating its effectiveness
in improving both model convergence speed and accuracy. The
code is available at https://github.com/LTTM/ALT.

Index Terms—Federated Learning, Image Classification, Adap-
tive Training

I. INTRODUCTION

Federated Learning (FL) [1] has emerged as a powerful
machine learning paradigm that enables collaborative model
training while ensuring data privacy. Unlike traditional central-
ized approaches, FL allows multiple clients to train a shared
model locally, eliminating the need for direct data sharing.
This decentralized nature helps to address concerns related
to data security, regulatory compliance, and communication
costs, making FL particularly well-suited for applications in
healthcare, finance, and mobile computing [2].

A key challenge in FL is the heterogeneity of participating
clients. Clients may be significantly different in terms of com-
putational power, network bandwidth, and data distribution
[3]–[5]. Standard FL algorithms typically train each client for
a fixed, pre-defined number of local epochs before aggregating
the updates at the server. However, this rigid training schedule
does not account for the variability in client resources and data
characteristics. In particular, when data distributions across
clients are highly heterogeneous, a common scenario in real-
world FL applications, training each client for the same fixed
number of epochs may lead to severe representation drift in
some clients, thereby negatively impacting the global model’s
convergence and overall performance.

Furthermore, enforcing a uniform number of local training
epochs across all clients may lead to inefficient resource
utilization. Some clients may be forced to train for longer than

Fig. 1. Overview of the proposed federated learning strategy with dynamically
changing local training epochs. At each communication round, clients perform
a variable number of local epochs, different between each others, depending
on their feature representation. As an example, in the figure the second client
performs more local epochs than the other clients.

necessary, increasing the risk of overfitting on their local data.
Others may be unable to complete their assigned training due
to resource constraints, leading to incomplete or low-quality
model updates. This inefficiency not only affects convergence
but also increases energy consumption, which is a critical
concern for battery-operated edge devices and contributes to
the environmental footprint of large-scale FL deployments.

To address these challenges, we introduce an adaptive
training mechanism where each client dynamically determines
its number of local training epochs based on a feedback-driven
approach (see Figure I). Unlike traditional FL methods that
impose a fixed training length, our approach allows the number
of local epochs to vary both across clients and across different
communication rounds.

Specifically, we propose a client-side control strategy that
mitigates representation drift, reduces communication costs,
and improves overall FL performance. Our method is based on
tracking the evolution of learned representations by measuring
the difference in embeddings between the locally trained
model and the server-provided global model. By comparing
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this difference against a dynamic threshold, each client can au-
tonomously decide when to stop training, ensuring that training
is neither excessively prolonged nor prematurely terminated.

Through extensive experimentation, we demonstrate that our
proposed adaptive training strategy not only improves model
performance but also significantly reduces the total number
of local epochs required. This, in turn, leads to lower energy
consumption while maintaining or even enhancing the final
accuracy of the global model.

The remainder of this paper is organized as follows: Section
II reviews related works, while Section III provides a detailed
description of the proposed approach. Implementation details
are presented in Section IV, followed by experimental results
in Section V. Finally, Section VI concludes the paper and
outlines future research directions.

II. RELATED WORKS

The baseline approach for federated learning is FedAvg
[1], where clients independently perform local training on
their private data for multiple epochs (differently from local
SGD [6]) and then the server aggregates the local models
with a simple weighted average. However, it does not allow
participating devices to perform variable amounts of local
work based on the constraints of their underlying system or
on the evolution of the model being learned.

FedProx [7] addresses this issue, assuming that a percentage
of the total clients do not complete their local training in
a predetermined amount of time. Moreover, this approach
introduces a dynamic regularizer in the local objective to limit
the impact of local variable updates.

Similarly, SCAFFOLD [3] addresses the client drift by
estimating the update directions of both server and clients,
to modify client gradients and correct their local updates.

Nonetheless, the interesting results of these methods do
not lead to significant improvements with respect to FedAvg
when neural networks are deep, as is common for real-
world computer vision applications. To this end, MOON [4],
proposes a new approach for dealing with non-IID data in
presence of deep networks. MOON corrects local training via
model-based contrastive learning, enforcing similarity between
the current local model and the incoming global one, and
dissimilarity between the current local model and the previous
local one.

Another dynamic regularization approach is introduced in
FedDyn [8] to enable more efficient training in the presence
of a large number of devices, unbalanced data, and partial
participation. In every federated learning round, the objective
of each local device is dynamically updated to ensure that
the local objective is asymptotically consistent with stationary
points of the global loss.

Dap-FL [9] proposed a a deep deterministic policy gradient
assisted adaptive and privacy-preserving FL system, which
guarantees that clients with poor resources could participate
in FL by adaptively adjusting local training hyper-parameters,
and preserves model privacy through a secure aggregation
method based on the Paillier cryptosystem. However, the

global model prediction accuracy of ResNet-18 on MNIST
is not improved with the deployment of the proposed strategy.

Previous approaches disregard internal representations to
aggregate model weights. FedMargin [10], instead, computes
client deviations based on the margin of class-conditional
representations, and uses them to drive federated optimization
via an attention mechanism.

Differently from FedProx which accounts for “random”
stragglers, in this paper, the internal representation is exploited
at the client side to compute the optimal number of training
steps, thus limiting client drift. In practice, clients estimate
and decide for how long they can train without compromising
their representation.

III. METHOD

A. Federated Learning Setup

Let us assume a set of clients K, where each client k ∈ K
has access to a local set of samples (Xk,Yk) from a dataset
Dk with |Dk| = nk. The objective is to collaboratively train a
global model θ = {w, v} made of an encoder network w and
a decoder v without sharing raw data among clients.

At each communication round r ∈ {1, . . . , R}, the server
selects a subset of clients S ⊂ K to participate in training.
Each selected client s ∈ S initializes its local model θrs with
the current global model θr and performs local training for
Er

s epochs, where Er
s is dynamically determined and varies

across clients and rounds.
Each client s ∈ S updates its local model by minimizing

the empirical risk over its dataset Ds using the following loss
function:

Ls(θ) =
1

|Ds|
∑

(x,y)∈Ds

ℓ(fθ(x), y), (1)

where ℓ(·, ·) represents the standard cross-entropy loss for
classification tasks, and fθ(x) denotes the model’s prediction
for input x.

During local training, the model parameters are updated
using gradient descent on mini-batches B ⊂ Ds:

θrs ← θrs − η∇Ls(θ
r
s ;B), (2)

where η is the learning rate.
After local training, each client sends its updated model θrs

to the server. The server then aggregates the received updates
using standard federated averaging:

θr+1 =
∑
s∈S

ns∑
j∈S nj

θrs , (3)

where ns is the number of local samples at client s. This
aggregation ensures that updates from larger datasets have a
greater influence on the global model.



B. Adaptive Local Training with Embedding Similarity

Traditional FL methods use a fixed number of local epochs
E for each client, which can lead to inefficiencies due to
heterogeneity in data distributions, computational power, and
communication constraints. To address this, we introduce an
adaptive mechanism where each client dynamically determines
when to stop training based on the similarity between learned
representations.

At each training step, we extract feature embeddings from
both the local model and the global model. Specifically, let

ps = f(ws,B), pg = f(wg,B) (4)

denote the feature embeddings produced by the local encoder
ws and the global encoder wg for the current mini-batch B.

To monitor training progress, we compute the cosine simi-
larity between these embeddings:

cos(ps, pg) =
ps · pg
∥ps∥∥pg∥

. (5)

Local training halts when the similarity condition

cos(ps, pg) < Th(r) (6)

is met, where Th(r) is the value of a dynamically adjusted
threshold at round r. This threshold ensures that clients stop
training once their local representation becomes too mis-
aligned with respect to the global model received from the
server, preventing unnecessary computation and reducing the
risk of overfitting. If this condition is never met, the training
proceeds until the maximum local epoch limit E is reached.
The pseudo-code is reported in Algorithm 1.

C. Benefits of the Adaptive Training Strategy

The proposed adaptive epoch selection method provides
several advantages:

• Efficient Resource Utilization: Clients train for fewer
epochs, reducing energy consumption and extending bat-
tery life in mobile devices with limited computational
power.

• Mitigating Representation Drift: By stopping training
dynamically, we reduce the risk of local models diverging
too far from the global model, improving overall FL
convergence.

• Faster Convergence: Adaptive epoch selection prevents
overfitting on local data, leading to more stable updates
and accelerated global model training.

Note also how the approach introduces only a very limited
overhead, i.e., the computation of the embeddings’ similarity
at the end of each step, thus adding almost no extra complexity
to the standard training procedure.

Algorithm 1 Pseudo-code of the proposed ALT Federated
Learning algorithm.

1: Input: Initialize model parameters θ
2: Initialize maximum rounds R
3: Initialize threshold parameters a, b
4:
5: Server executes:
6: for r = 1 to R do
7: S ← Random subset of clients
8: Th(r)← a+ b∗r

R
9: for each client i ∈ S do

10: θi ← ClientUpdate(i, θ, r, Th(r))
11: end for
12: θ ←

∑
i∈S

ni

n θi
13: end for
14:
15: ClientUpdate(i, θ, r, Th(r)):
16: if r = 1:
17: θi ← θ
18: θi := {wi, vi}
19: θg ← θ
20: θg := {wg, vg}
21: stop ← False
22: for j = 1, 2, ..., E and stop = False do
23: for each batch B in Di do
24: pi ← f(wi,B)
25: pg ← f(wg,B)
26: if cos(pi, pg) < Th(r): stop ← True
27: θg ← θg − η∇L(θg;B)
28: θi ← θg
29: return θi

D. Thresholding Function Design

A key design choice is how to set the function Th(r). We
experimented different threshold functions Th(r), including 3
simple approaches:

• Linear Increasing

Th(r) = 0.1 + 0.8 · r
R

(7)

• Linear Decreasing:

Th(r) = 0.9− 0.8 · r
R

(8)

• Fixed (with constant c):

Th(r) = c (9)

Among these strategies, the most effective was the linear
increasing threshold (7), i.e., Th(r) = a + b·r

R , that linearly
increases during the training (we experimentally found that
setting a = 0.1 and b = 0.8 provides the optimal results).

The key insight behind this choice is that the threshold
should increase with time, i.e., the criteria should become
more and more strict with time, while on the other side the
difference w.r.t. the starting model typically increases, up to
the point where the condition is satisfied and the training stops.



This formulation enables a “slow start”, where early training
rounds allow for more flexibility in local updates before grad-
ually enforcing stricter similarity constraints. This progressive
tightening helps balance exploration and convergence, leading
to improved overall model performance.

Note that, in practice, any thresholding, including a fixed
rule (i.e., using Eq. 9), is useful to reduce computation.

IV. IMPLEMENTATION DETAILS

We use PyTorch [11] to implement our approach and the
various methods. For CIFAR-10, we use a lightweight CNN as
the feature extractor f , consisting of two 5× 5 convolutional
layers followed by 2× 2 max-pooling. The first convolutional
layer has 6 channels, while the second has 16. These are
followed by two fully connected layers with ReLU activation,
containing 120 and 84 units, respectively. For Tiny-ImageNet,
we adopt ResNet-50 as the feature extractor, as in [4].

We use the SGD optimizer with a learning rate of 0.01 for
all approaches. The weight decay is set to 1× 10−5, and the
momentum is 0.9. The batch size is fixed at 64. The maximum
number of local epochs, E, is set to 10, while the number of
communication rounds, R, is 1000 for CIFAR-10 and 150 for
Tiny-ImageNet. For MOON, we follow [4], [12] and set the
temperature parameter to 0.5 by default.

V. RESULTS

We evaluate the performance of our algorithm on the
CIFAR-10 [13], and Tiny-ImageNet [14] datasets. CIFAR-10
contains 60,000 32×32 color images belonging to 10 classes,
with 6,000 images per class. There are 50,000 training images
and 10,000 test images. Tiny-ImageNet contains 100,000 color
images for training belonging to 200 classes (500 for each
class) downsized to 64×64 pixels. Each class has 500 training
images, 50 validation images and 50 test images.

As a strong baseline for local training, we consider MOON.
We evaluate the performance using |K| = 100 clients, where
in each communication round, 10% of the clients are randomly
selected to participate in training. The data is partitioned
following a Dirichlet distribution [15] with a concentration
parameter α = 100.

Starting from the CIFAR-10 dataset (Table I and Figure 2),
the final accuracy achieved by FedAvg is 70.82%, while by
adding our strategy on top of it, it increases to 72.48%.

Similar results can be achieved by applying the proposed
approach over the MOON strategy, with an accuracy gain of
around 2%. Notice also that FedAvg + ALT can work similarly

Method Accuracy Cumulative Epochs
FedAvg 70.82% 100000

FedAvg+ALT 72.48% 31071
MOON 70.17% 100000

MOON+ALT 72.14% 46875

TABLE I
SUMMARY OF RESULTS ON CIFAR-10.
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Fig. 2. Accuracy curve on the CIFAR-10 dataset: a) per round; b) per total
number of training epochs.
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Fig. 3. Training length on the CIFAR-10 dataset: a) Total number of epochs
performed at each round; b) cumulative sum of the performed epochs during
training

or better then MOON, while being much more efficient in
terms of computational resources.

However, more than the final accuracy, the key contribution
of our approach is allowing to reach a good accuracy with a
more limited number of training steps: Figure 3a shows the
sum of the local epochs performed by all clients active during
each training round, while Figure 3b shows the cumulative
sum of training epochs at each round.

While in the standard setting a fixed number of 100 epochs
is performed at each round, our approach allows to drastically
reduce it, specially when applied on top of FedAvg. Notice
how the number of cumulative epochs is reduced to less than
a third when applying ALT on top of FedAvg.

The results on Tiny-ImageNet are shown in Table II while
Figure 4 shows the accuracy curves for this dataset. In general,
the behavior is similar to the one of CIFAR-10. Our approach,
specially when combined with FedAvg allows to reach an
higher accuracy, improving the final result from around 12.7%
of the standard approach to 20.51% with a gain of almost
8%. When applied on top of MOON the gain is smaller, from
14.89% to 15.56% but still noticeable.

Method Accuracy Cumulative Epochs
FedAvg 12.66% 15000

FedAvg+ALT 20.51% 2561
MOON 14.89% 15000

MOON+ALT 15.56% 9531

TABLE II
SUMMARY OF RESULTS ON TINY-IMAGENET .
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Fig. 4. Accuracy curve on Tiny-ImageNet: a) per round; b) per total number
of training epochs.

Moreover, as for CIFAR-10, the training length is drastically
reduced as shown in the plots in Figure 5. In particular the
plot in Fig. 5b shows that the cumulative number of epochs is
strongly reduced, specially when applying on top of FedAvg.
In this case, we achieve a reduction of around 6 times of the
number of performed epochs, a reduction bigger than on the
other dataset and in general quite impressive. When applying
on top of MOON the reduction is smaller but still relevant.

In conclusion, the experiments show that our method allows
to reduce substantially computation by reducing the cumu-
lative epochs per round (sum of all clients’ epochs), while
leading also to improved performance.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we introduced ALT, a novel representation
learning feedback mechanism designed to dynamically con-
trol the number of local epochs in federated learning. By
adaptively adjusting local training duration, ALT effectively
reduces both energy consumption and communication costs
while maintaining model performance. Our approach is seam-
lessly integrable into existing FL algorithms without requiring
significant modifications.

Experimental results on the CIFAR-10 and Tiny-ImageNet
datasets demonstrate that ALT enables more stable training
dynamics and accelerates convergence compared to traditional
fixed-epoch strategies. The results highlight its potential in
enhancing efficiency in real-world FL deployments.

Future research will be devoted to the adaptive setting of
other FL parameters and to the evaluation of the proposed
approach in combination with other FL strategies.
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